SCHWARZSCHILD RADIUS

This can be obtained by equating the Newtonian escape speed v_N to the speed of light c. To obtain v_N set the initial kinetic energy $KE = \frac{1}{2} m v_N^2$ of a mass m equal to the change in potential energy $PE = GMm/R_S$ in going from a distance R_S (the Schwarzschild radius) to infinity away from a mass M:

$$\frac{1}{2}mv_N^2 = \frac{1}{2}mc^2 = GMm/R_S \implies R_S = 2GM/c^2.$$
 (1)

The term $\frac{1}{2}mc^2$ does not look relativistic and it is not, but mc^2 cannot be used because the change in potential energy = GMm/R_S on the right hand side of eq. (1) is not relativistic. Surprisingly eq. (1) is the same as the general relativity (GR) result.

The Schwarzschild radius for a Planck mass $m_P = (\hbar c / G)^{1/2}$ is $R_S = (2Gm_P / c^2)$ = $2(\hbar G / c^3)^{1/2}$, twice the Planck length.